See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/317169869

Fracture characterization of grid-reinforced asphalt pavements

Presentation · June 2016

DOI: 10.13140/RG.2.2.12537.67681

CITATION		READS					
1		90					
1 - uthen							
1 autor:							
	Andrea Graziani						
ARK P	Università Politecnica delle Marche						
	115 PUBLICATIONS 1,855 CITATIONS						
	SFE PROFILE						
Some of the authors of this publication are also working on these related projects:							
	Advanced dynamic characterization of interfaces in multilayer structural systems	View project					
Project	Auvanced dynamic characterization of memaces in multilayer su dctural systems view project						

All content following this page was uploaded by Andrea Graziani on 26 May 2017.

Fracture characterization of grid-reinforced asphalt pavements

Andrea Graziani*, Cesare Sangiorgi**, Francesco Canestrari*

*Marche Polytechnic University, Ancona, Italy **University of Bologna, Italy

- Introduction
- Project description (Rilem TC-SIB)
- Materials and test methods
- Results and discussion
- Conclusion and Future work

Grid-reinforcement of asphalt layers

- Construction, maintenance and rehabilitation practice
 - New on New

New AC base course

Grid installation

Ready for takeoff/landing

Grid-reinforcement of asphalt layers

- Construction, maintenance and rehabilitation practice
 - New on New
 - New on old (distressed/cracked)

Milling of surface course

Leveling/regularization

Grid installation

Grid-reinforcement of asphalt layers

- Improvement in pavement performance
 - Improve rutting or fatigue resistance
 - Prevent or delay reflective cracking

Brown et al. (1985), "Polymer grid reinforcement of asphalt", Proc. AAPT, Vol 54, 1985

Objective and methodology

- Characterize the fracture resistance of grid-reinforced asphalt concrete layers
- 3-Point bending tests on double-layered specimens
- Flexural toughness measured using energy based toughness indices

Rilem project (TC 237-SIB)

- Advanced Interface Testing of Geogrids in Asphalt Pavements
 - Interlaboratory test:
 - measure the properties of reinforced interfaces (de-bonding)
 - measure the properties of double-layered reinforced systems
 - Real-scale analysis
 - Measure pavement response using FWD tests and Real scale loads
 - Analyze the pavement performance under traffic (i.e. surface cracking evolution).

Materials (TC 237-SIB)

- Double-layered slabs obtained from experimental test section
 - Real scale paving equipment and grid installation techniques

Materials (TC 237-SIB)

Double-layered slabs obtained from experimental test section

Testing methods

• 3PB monotonic (UniBO)

- H = 90 mm (45+45)
- D = 100 mm, L = 400 mm
- h_{notch} = 20 mm
- Speed = 5 mm/min
- T = 10 °C

• 3PB monotonic (UniAN)

- H = 75 mm (45+30)
- D = 90 mm, L = 240 mm
- No notch
- Speed = 50 mm/min
- T = 20 °C

Testing results

• 3PB monotonic (UniBO)

• 3PB monotonic (UniAN)

11

8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements (MCD2016)

Testing results: CF crack propagation

Testing results: FP crack propagation

13

Results: first crack load and deflection

UNIVPM						
	Max load Pm	ax		Deflection @Pmax		
	Average	Std. Dev.	CoV (%)	Average	Std. Dev.	CoV (%)
UN	4.24	0.42	9.82	1.59	0.13	8.05
CF	4.77	0.42	8.91	1.73	0.25	14.28
FP	4.91	0.71	14.54	1.75	0.25	14.51
UNIBO						
	Max load Pmax			Deflection @Pmax		
	Average	Std. Dev.	CoV (%)	Average	Std. Dev.	CoV (%)
UN	2.83	0.34	11.92	0.87	0.08	9.68
CF	2.63	0.10	3.80	0.96	0.15	15.61
FP	3.03	0.27	8.91	0.94	0.36	38.74

Flexural behavior of fiber-reinforced concrete (FRC)

Naaman, et al. (1993) Mechanical behavior of High performance concrete, Volume 6, SHRP-C-366

Di Prisco et al. (2009). Fibre reinforced concrete: new design perspectives. Materials and Structures, 42(9)

Energy-based dimensionless indices

- ASTM C 1018
 - Standard test method for Flexural Toughness and first crack strength of Fiber-Reinforced Concrete (Using Beam with third Point Loading)

16

Energy-based dimensionless indices

- ASTM C 1018
 - Standard test method for Flexural Toughness and first crack strength of Fiber-Reinforced Concrete (Using Beam with third Point Loading)

Energy-based dimensionless indices

• UniAN

• UniBO

Conclusions

- Grid-reinforcement did not affect first-crack load and deflection (pre-cracking behavior)
- Post cracking behavior was similar with different test geometries and conditions (temperature, loading rate)
- Pre & Post cracking behavior was similar to that of fiber-reinforced concrete (FRC)
- Energy-based dimensionless were effective in characterizing flexural toughness
- The grid effect is more evident at higher limiting deflections (120)

Suture work (1)

- Evaluate temperature and deformation rate effects (time-temperature superposition)
- Review first crack definition
- Back-analysis of previous 3PB tests and generalization of results
- Evaluate other deflection-based toughness indices

Future work (2)

Original contribution by Dr. Shangtong Yang, University of Strathclyde Glasgow, UK

- Extended finite element simulation
 - Three-phase model asphalt concrete, geogrid and interfaces;
 - Cracks/damaged modeled in both concrete and interfaces.

- Asphalt Concrete—quasi-brittle material;
- Glass Fiber Reinforced Polymer geogrid (FP) elastic material;
- Red line (---) interface: cohesive crack model.

Future work (2)

Original contribution by Dr. Shangtong Yang, University of Strathclyde Glasgow, UK

- Extended finite element simulation Preliminary results
 - Stress distribution, load deflection curve

Thank you!

